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Abstract

We report a systematic study of the C(2)1Πu electronic state in rubidium

dimer, observed in polarization labelling spectroscopy experiment through the

C← X1Σ+
g transitions recorded under rotational resolution in two isotopologues

85Rb2 and 85Rb87Rb. Regularity of the vibrational progressions was distorted

by numerous interactions with the surrounding 21Σ+
u , 23Πu and 33Σ+

u states.

Deperturbation was performed by coupled-channels analysis taking into account

spin-orbit and rotational interactions. Potential energy curves and parameters

describing the off-diagonal matrix elements were determined as functions of in-

ternuclear distance. About 3000 line frequencies from the present study are

reproduced with a standard deviation of 0.07 cm−1, in agreement with the ex-

perimental accuracy. Along with this, the model is consistent with all high

resolution experimental data on the involved electronic states, available in the

literature.
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1. Introduction

Diatomic rubidium molecules have attracted much attention in recent years,

particularly in view of investigations of ultracold molecules. Consequently, the

lowest X1Σ+
g and a3Σ+

u states [1, 2, 3, 4, 5] and the states correlated with the first

excited 5s+5p atomic asymptote, employed in cold physics experiments, have

been studied thoroughly (e.g. [6, 7, 8, 9]). Concerning higher excited electronic

states, their spectroscopic investigations by laser techniques started in the last

decades of the previous century, in particular from extensive studies by Amiot

and co-workers ([10, 11, 12]). However, despite of considerable progress achieved

in recent years [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26], there are

surprising gaps in their experimental knowledge. State-of-the-art theoretical

calculations on rubidium dimer [19, 27] give a qualitative picture of its energy

structure but precision of the predicted molecular constants is still far below

spectroscopic accuracy.

In the present paper we are dealing with electronic states correlated with

the second excited atomic asymptote in Rb2, 5s+4d, for which the experimental

evidence is very scarce and incomplete. The present experiment was originally

aimed to study excitation of the 21Σ+
u state, according to theoretical calculations

located about 20000 cm−1 above the bottom of the ground X state and predicted

to have a very broad and unusually shaped potential energy curve (see Figure 1).

Up to now only part of this state was observed in a photoassociation experiment

[28] but not analysed in a spectroscopic sense. Having failed to achieve this goal,

possibly because of low transition dipole moment for excitation from low levels

of the ground molecular state and/or poor Frank-Condon factors, we focused

our attention on the C(2)1Πu state, also available in direct transitions from

the ground X1Σ+
g state and positioned in roughly the same energy range. This

state was previously investigated in laser-induced fluorescence by Amiot [11]

but the molecular constants determined in that work described only the few

lowest vibrational levels and moreover provided low accuracy in reproducing

the experimental energies because of evident local perturbations. A limited
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Figure 1: (In colour online) Potential energy curves of electronic states of rubidium dimer

relevant for the present analysis. Solid lines indicate singlet states, dashed/dotted lines cor-

respond to states of triplet symmetry as calculated theoretically [19]. Circles, squares and

triangles represent potentials fitted in the present work. Potential curves of the 11∆u and

13∆u states (not fitted here) are indistinguishable in this energy scale. Energies are given

with respect to the minimum of the ground electronic state. Atomic dissociation products are

indicated.

number of spectral lines observed in the experiment by Amiot did not allow to

pursue this problem any further. In later years, the C(2)1Πu state was studied

again by Lee, Lee and Kim in a cold molecular beam [17]. Their measurements

covered broader range of vibrational levels (v′ = 0 − 11) but were confined

to low values of rotational quantum number J ′. They noticed perturbations

of v′ = 5 − 8 levels and ascribed them to interaction of the C state with the

neighbouring 33Σ+
u and 23Πu states, whereas the lower v′ = 0 − 4 and upper

v′ = 9− 11 levels appeared unperturbed.

In our experiment we recorded systematically excitation spectra of the C(2)1Πu

← X1Σ+
g band system covering the range v′ = 0−25 and J ′ = 33−169 in 85Rb2
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and 85Rb87Rb isotopologues. Perturbations of various strength, resulting from

interaction of the C state with 33Σ+
u and 23Πu but also with the 21Σ+

u state (the

last perturbation previously undetected) have been found for all the observed

levels, even those claimed to be free of perturbation in previous reports. The

three perturbing states turned out to be directly unobservable (‘dark’ states)

except for close vicinity to regions where perturbations culminate. After careful

examination of the spectra finally we have assigned nearly 3000 spectral lines

of the C(2)1Πu ← X1Σ+
g system, including both main lines and extra lines.

All the existing experimental data, the vast majority of them collected in

the present experiment and supplemented by results of previous reports [16, 17],

were subjected to coupled-channels deperturbation analysis outlined below, in

which potential energy curves of all four involved electronic states and param-

eters describing couplings between them were determined as functions of inter-

nuclear distance. The model allows to reproduce the experimental positions of

spectral lines with an overall accuracy of 0.07 cm−1.

2. Experimental procedure

The experimental principle and setup are very similar to those described

in the previous papers [18, 19, 20, 21, 22, 23, 24]. Laser polarization labelling

spectroscopy (PLS) was employed to study excitation spectra of Rb2 from the

electronic ground state. For this purpose the molecular sample was irradiated

by co-propagating beams of two independent lasers, the strong, tuneable pump

laser and weaker, narrowband probe laser. The frequency of the probe laser was

set on known molecular transitions in the B(1)1Πu ← X1Σ+
g band system of ru-

bidium dimer [12]. Light of the pump laser was tuned across the investigated

spectral region. Whenever its frequency coincided with some molecular transi-

tion (v′,J ′) ← (v′′,J ′′), an optical anisotropy was induced in the rovibrational

level of the ground state (v′′,J ′′) by populating or depleting the degenerate M ′′
J

levels to various degrees. As the linearly polarized probe beam interacted with

this anisotropic sample, its polarization was changed, provided that the lower
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level (v′′,J ′′) was shared by the pump and probe transitions. This was moni-

tored by two crossed polarizers placed on opposite sides of the molecular sample.

Thus fixing the probe laser on a chosen, well known B(v,J) ← X(v′′,J ′′) transi-

tion, tuning the pump laser and observing changes in polarization of the probe

beam we could record transitions from a single (‘labelled’) ground state level

to many levels of the excited state(s), forming progressions of P, R doublets or

P, Q, R triplets depending on polarization of the pump light (see Ref. [29] for

detailed selection rules applying to the PLS method).

The rubidium dimers were produced in a linear heat-pipe oven by heating

metallic rubidium (ca. 5 g, natural isotopic abundance) to about 570 K in pres-

ence of 4 Torr of argon buffer gas protecting the quartz windows. As a probe

laser we used a cw single-mode ring dye laser (Coherent 899-21 operated on

DCM dye) set at fixed frequencies of the B ← X system measured and actively

stabilized using a High-Finesse WS-7 wavemeter. The pump laser (pulsed Lu-

monics HD 500 dye laser) with Coumarin 480 as a laser dye was scanned between

20400 and 21350 cm−1, allowing molecular lines originating from the labelled

ground state levels to be recorded in this range. With the laser bandwidth

slightly below 0.1 cm−1, the spectra were calibrated to a similar absolute accu-

racy, accomplished by simultaneous recording of argon and neon optogalvanic

lines as well as transmission fringes of a Fabry-Pérot etalon 0.5 cm long.

3. Experimental observations

The investigated spectral region corresponds to the energy range 19800–

22100 cm−1 above the minimum of the ground state potential well. We recorded

there transitions from the X1Σ+
g state apparently to one excited electronic state.

Symmetry of the upper state has been established as 1Πu because of presence

of Q lines in the spectra and it has been identified as C(2)1Πu basing on molec-

ular constants given by Amiot [11]. However, the C state turned out to be

strongly perturbed, with corresponding spectral lines frequently shifted even by

a few cm−1 from the positions predicted by the existing constants. In addition,
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numerous extra lines accompanied the main lines (Figure 2).

In Figure 3a we display differences between the observed energy levels and

the levels calculated for v′ = 1, 2, 6 and 7 in a simple single channel model of

the C(2)1Πu state. These vibrational levels are selected to show two different

types of perturbations. In v′ = 1, 2 only the e symmetry levels are affected and

frequent culminations of perturbations tell us that the vibrational and rotational

constants of the perturber should be very different from that of the C state.

Comparing Fig. 1 one can guess that the perturber is in this case the 21Σ+
u

state. In v′ = 6, 7 levels of both symmetries are affected and fewer culminations

of perturbations are observed, so the perturbers can be 23Πu and 33Σ+
u states.

Altogether 2978 main and extra lines were identified in the spectra of both

isotopologues 85Rb2 and 85Rb87Rb, and assigned v′ and J ′ quantum numbers

of the upper state when it was dominantly the C state, and only J ′ in case

of perturbing states. The calibration of the PLS spectra assures uncertainty

better than 0.1 cm−1. In the course of further analysis only 28 lines (i.e. less

than 1% of all observed) have been rejected as misassigned or impossible to be

included in the model developed below since they cannot be reproduced within

better than ±0.5 cm−1. The measured line positions are differences between the

energies of the upper and lower levels. Since the energies of rovibrational levels

in the ground X1Σ+
g state are known with very high precision [5], the upper state

energies were determined with accuracy of the spectral line measurements. This

resulted in 2035 energies of the upper state(s) levels. As our observations span

the range v′ = 0 − 25, J ′ = 33 − 169 in the C(2)1Πu state, we supplemented

the database by adding energies of levels generated from band parameters given

by Lee et al. in Table 1 of Ref. [17] and related to the lowest rotational levels

J ′ < 32 for v′ = 0 − 11. We added also some energy levels of the 23Σ+
u state

(J ′ = 1 − 10, v′ = 10 − 13, constants from Table 2 in Ref. [17]) and of two Ω

components of the 23Πu state, taken from Table I (J ′ = 1 − 9, v′ = 0 − 12)

and Table II (J ′ = 1, v′ = 0 − 12) of Ref. [16], generated in the same way.

Consequently, a total of 542 calculated energy levels from [16, 17] were added.

The range of rotational quantum numbers J of the added levels is somewhat
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Figure 2: A portion of the experimental spectrum corresponding to the C(2)1Πu(v′, J ′ =

J ′′, J ′′
± 1) ← X1Σ

+
g (v′′ = 1, J ′′ = 91) transition originating from the ground state level of

85Rb2 labelled by the probe laser set at the known B(1)1Πu(v = 6, J = 91) ← X1Σ
+
g (v′′ =

1, J ′′ = 91) transition at the wavenumber 14854.515 cm−1. Only the v′ = 8 level of the C

state appears unperturbed as at excitation of the other levels some extra lines can be seen.

arbitrary, because in [16, 17] there is no information about the validity of the

derived band constants.

4. The coupled-channels (CC) model

For reporting the experimental observations we attempted to construct as

simple and compact model as possible. The analysis started with the f sym-

metry levels, observed through the Q transitions. Such transitions initially

dominated the experimental data because up to v′ = 4 level they seemed to

be free from local perturbations. Based on these data it was found that the

main perturber of the C(2)1Πu state is not the 23Πu state (as stated by Lee
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et al. [17]), but rather the 33Σ+
u . In order to model interactions between the

C(2)1Πu and the 33Σ+
u states we need already a three channels model including

the Ω = 0− and Ω = 1 components of the 33Σ+
u state. The Ω = 1 component

of the 23Πu state also perturbs the C(2)1Πu but mostly indirectly, through its

interaction with the 33Σ+
u . This four channels model was quite adequate for

the f symmetry levels. To extend it to the e symmetry manifold we removed

the 33Σ+
0−

channel (f symmetry only), but it turned out necessary to add the

21Σ+
u state, because the e symmetry levels were found to be perturbed already

starting from v′ = 0 and interaction with the 21Σ+
u state (e symmetry only) is

the only plausible reason for this. Such an interaction was not reported in the

previous study by Lee et al. [17], probably because of low J ′ levels observed in

their beam experiment. Finally, the four channels model for both symmetries

was again extended by including the Ω = 0± components of the 23Πu state,

because it turned out to be important to reduce the excessively large residuals

for the heavily mixed 1Πu∼ 3Σ+
u levels, especially of f symmetry. With the

present set of experimental data we see no necessity to include the Ω = 2 com-

ponent of the 23Πu state or the 11,3∆u states which correlate to the same 5s+5d

asymptote, so the final model for both symmetries contains five channels.

In the formulation outlined above, the model involves four electronic states,

which are coupled by the spin-orbit and various rotational perturbations. We

aimed to include only the most significant channels, sufficient to reproduce the

experimental observations. In other words we took into account only these

channels, removing of which degraded quality of the fit significantly. However,

the complexity of the model and structure of the experimental data (containing

mainly data on the C state) caused that some components of the model could not

be determined uniquely. Fortunately our task was facilitated by high quality ab

initio calculations providing theoretical potential energy curves [19] and various

elements of the Hamiltonian matrix linking the involved states [30].

In the present section we summarize the components of the CC model. Since

we use symmetrized electronic wave functions while in [30] the matrix elements

are calculated with nonsymmetrized functions, it is important to show explic-
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itly the expressions for matrix elements used by us in order to avoid possible

ambiguities.

In the model we have six spin-orbit interactions (for sake of simplicity here-

after we omit the ungerade index and plus/minus indices wherever no ambiguity

is introduced)

〈1Π1|ĤSO|3Σ+
1 〉ef = ξ1Π3Σ(R)

〈1Π1|ĤSO|3Π1〉ef = −ξ1Π3Π(R)

〈3Σ+
1 |ĤSO|3Π1〉ef = ξ3Σ3Π(R)

〈3Σ+
0 |ĤSO|3Π0〉f =

√
2ξ3Σ3Π(R)

〈1Σ+
0 |ĤSO|3Π0〉e = −

√
2ξ1Σ3Π(R)

〈3Π0|ĤSO|3Π0〉ef = −A3Π3Π(R) ,

(1)

and seven rotational interactions. The latter are caused by the neglected part

of the rotational Hamiltonian Ĥrot = B
(

L±S∓ − J±S∓ − J±L∓
)

. Here J±L∓

stands for J+L− + J−L+ and B = h̄2/(2mR2).

J±S∓coupling :

〈3Σ+
1 |Ĥrot|3Σ+

0 〉f = −B
√
2
√

S(S + 1)
√

J(J + 1)

〈3Π1|Ĥrot|3Π0〉ef = −B
√

S(S + 1)
√

J(J + 1)

L±S∓coupling :

〈3Σ+
1 |Ĥrot|3Π1〉ef = B

√

S(S + 1)L3Π3Σ(R)

〈3Σ+
0 |Ĥrot|3Π0〉f = B

√
2
√

S(S + 1)L3Π3Σ(R)

J±L∓coupling :

〈1Π1|Ĥrot|1Σ+
0 〉e = −B

√
2
√

J(J + 1)L1Π1Σ(R)

〈3Σ+
1 |Ĥrot|3Π0〉ef = −B

√

J(J + 1)L3Π3Σ(R)

〈3Σ+
0 |Ĥrot|3Π1〉f = −B

√
2
√

J(J + 1)L3Π3Σ(R) .

(2)

The lower indices e and f of the matrix elements denote for which symme-

try manifold they are calculated. Generally the calculation of matrix elements
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follows Ref. [31], the only differences are in the matrix elements involving the

33Σ+
u state. In [31] the S-uncoupling operator (−BJ±S∓) is taken explicitly

into account and the wave functions are actually the Hund’s case (b) functions.

Here the 33Σ+
u state is treated within the Hund’s case (a).

Details on the realization of the CC model can be found in Refs. [21, 32].

The total wave function is represented in the basis of the selected Hund’s case

(a) states Φi(R, r) as:

Ψα(R, r) =

N
∑

i=1

Φiα(R, r)χiα(R) , (3)

where χiα(R) are R-dependent mixing coefficients. Index α denotes all good

quantum numbers, which characterize the mixed state (J , e/f symmetry). For

the e symmetry levels the basis functions Φiα(R, r) are 21Π1, 21Σ+
0 , 33Σ+

1 , 23Π1

and 23Π0. For the f symmetry levels the basis functions are 21Π1, 33Σ+
0 , 33Σ+

1 ,

23Π1 and 23Π0. Coefficients χiα(R) are searched as solutions of the system of

coupled Schrödinger equations

(

− h̄2

2mR2

d2

dR2
+Ui(R)+ĤROT

iα (R)
)

χiα(R)+
∑

j 6=i

Ĥij(R)χjα = Eαχiα(R) , (4)

where Ui(R) is the diagonal R-dependent matrix element of the electronic

Hamiltonian. It contains the rotationless potential energy curve for each of

the basis electronic states and also diagonal matrix elements of the spin-orbit

operator. ĤROT
iα (R) denotes the diagonal angular part of the nuclear kinetic

energy operator

ĤROT
iα =

h̄2

2mR2

(

J(J + 1)− Ω2 − Λ2 + S(S + 1)− Σ2
)

, (5)

and Ĥij(R) represent the off-diagonal matrix elements of the spin-orbit opera-

tors (1) and of the rotational Hamiltonian (2).

The system of CC equations is solved by the Fourier-Grid-Hamiltonian method

[33] implemented as described earlier [21]. All radial functions are calculated

in a mesh of 250 points for 2.5 ≤ R ≤ 14 Å. Such a relatively large interval is
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necessary due to the double minimum 21Σ+
u state, the classical outer turning

points of which are at about 10 − 11 Å for the studied range of energies. The

matrix of the model Hamiltonian is then diagonalized and for each experimen-

tal level Eexp the closest match among the calculated energies Ecalc is searched.

The model parameters are then fitted to minimize value of the expression

σ̄ =

√

1

n

∑

i

(Eexp
i − Ecalc

i )2

σ2
i

.

All model functions are defined as sets of points connected with cubic splines.

The ordinates of these points are adjusted during the fit. The model consists of

four PECs, two R-dependent matrix elements of the L+ operator (L1Π1Σ(R) and

L3Π3Σ(R)) and five SO matrix elements: the off-diagonal ξ1Π3Σ(R), ξ1Π3Π(R),

ξ3Σ3Π(R) and ξ1Σ3Π(R) and the diagonal A3Π3Π(R). Initially the matrix ele-

ments of the coupling operators were taken from Ref. [30], but the number of

grid points was reduced to about 10–15. At later stages of the analysis some of

these functions were fitted.

The most sensitive and ambiguous part of the model are the PECs. Before

the current study systematic experimental observations existed only for the

C(2)1Πu [17] and 33Πu states [16]. They allow to fix the Te values of these

electronic states and also to some extent the shape of their PECs (by the RKR

potentials derived in [16] and [17]), up to v′ = 11 in the C state and v′ = 12 in

the 23Πu state. For longer and shorter internuclear distances we extended the

RKR potentials by theoretical curves from Ref. [19].

Four bands of the 33Σ+
u –X1Σ+

g system were also observed in [17] and char-

acterized by their band origins ν0, rotational constants Bv′ and the Λ-doubling

constants. Isotope analysis provided the most likely vibrational quantum num-

bers of these bands as v′ = 10− 13. This information was used by us to adjust

appropriately the theoretical potential curve of the 33Σ+
u from Ref. [19]. As

already mentioned, this state turned out to be the most strong and direct per-

turber of the C state, however at the early stages of the analysis it was found

that similar quality of the fit may be achieved using different values of Te for
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a

b

Figure 3: Differences between the observed and calculated energy levels for v′ = 1, 2, 6 and 7.

In panel (a) the levels are calculated from a single channel model, in panel (b) from the present

CC model. Full circles (blue online) correspond to e parity levels, open circles (red online) to

f levels. The vibrational levels v′ are selected to show various types of perturbations in the

21Πu state. Note different vertical scales in both panels.

33Σ+
u (≈ ±100 cm−1, while ωe is about 40 cm−1). The data from Ref. [17] gave

ultimate preference to one of these values. Eventually, the band constants for

the C(2)1Πu, 23Πu and 33Σ+
u states from [16, 17] were used to calculate ‘exper-

imental’ energies of the corresponding levels and these energies were added to

the present experimental set of data.

The only state which so far avoided experimental characterization at high

resolution is the 21Σ+
u state. Several attempts were undertaken within the

present study but no PLS spectra related to this state were registered for tran-

sitions from the ground state. At present the reason remains unclear, since

an estimation of relative line intensities based on the transition dipole moment

from Ref. [27] and the corresponding overlap integrals show that transitions in
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the 21Σ+
u ← X1Σ+

g band system should not be very much weaker than in the

C(2)1Πu ← X1Σ+
g system observed by us. The 21Σ+

u state is responsible mainly

for the J-dependent, heterogenous perturbations with e levels of the C state

near its minimum. These perturbations become clearly visible for J ′ > 30 and

therefore most of them were not noticed in the earlier study by Lee et al. [17].

Due to a large difference in the rotational constants of the interacting states, for

each vibrational quantum number (up to v′ = 6− 7) level crossings appear ap-

proximately for every tenth rotational quantum number J (see Fig. 3a). Again,

these perturbations could be reasonably reproduced with various positions of

the 21Σ+
u state potential minimum. To reduce the ambiguity, we carried out

systematic measurements covering a broad range of rotational quantum num-

bers 61 ≤ J ≤ 121 in the main isotopologue 85Rb2 and the second abundant

isotopologue 85Rb87Rb. The isotope shift depends on the depth of the potential

well and by having significant amount of data on both isotopologues we found

the unique value of Te of the 21Σ+
u state which is able to reproduce correctly

perturbations in both isotopologues.

5. Results

As already mentioned in Section 4, the complexity of the model grew as

more and more experimental data were involved. The ambiguity in the neces-

sary number of channels originates mainly from the structure of our data set,

containing predominantly C(2)1Πu levels. Although including many perturbed

energy levels, these data did not allow to construct the potential curves and the

coupling matrix elements in a unique way. During the fit, we often observed

that very different potential curves for the 33Σ+
u , 23Πu and 21Σ+

u states led to

the same results. Similar observation concerns the shape of the radial functions

ξ(R), A(R), L(R), included in the coupling matrix elements. Therefore we can-

not claim that the final model functions, resulting from numerous trials and

errors, are unique. Very helpful in removing ambiguities were the existing data

on the 33Σ+
u and 23Πu states from [16, 17] as well as the theoretical curves from
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[19] and [30].

The final parameters for the best model functions are listed in the supple-

mentary materials [34]. In Figure 1 we compare the fitted potentials with the

theoretical ones from Ref. [19]. Significant difference can be observed only for

the C(2)1Πu state, but this disagreement was noticed already in [19] by compar-

ison with the experimental observations by Amiot et al. [11]. The present study

estimates the minimum of the C state potential curve to be at Re = 4.645 Å

with Te = 20895.16(2) cm−1, in agreement with Refs. [11, 17]. In the scale of

the Figure 1 one can hardly see differences between the other fitted and theoret-

ical potential curves and indeed they agree to within approximately ±100 cm−1.

For the 23Πu state, the minimum of the PEC is fixed by the experimental data

from Ref. [16]. However for the other two potentials, that is of the 33Σ+
u and

21Σ+
u states, the close agreement results rather from our intention to keep the

fitted curves as close to the theoretical ones as possible, than from fitting of the

experimental data. The ambiguity in this case may be removed only by new

experimental observations.

Apart from the potential curves, the model contains altogether seven radial

functions (see eqs. (1) and (2)). Initially they were all fixed to the theoretical

values from Ref. [30]. Already the first iterations showed that the most impor-

tant functions in the fit are the PECs of the C and the 33Σ+
u states and the

ξ1Π3Σ(R) radial function. They had to be adjusted virtually always when new

experimental data were added or changes in the model introduced. The poten-

tial curve of the 21Σ+
u state was adjusted at the beginning, when solely the e

symmetry levels were included in the fit and later was readjusted only at the

final stages of the fit. The apparent reason is that the C(2)1Πu ∼ 21Σ+
u interac-

tion can be to a great extent separated from the rest of the model. To describe

this interaction within the experimental uncertainty, the radial function L1Π1Σ

was also adjusted together with the 21Σ+
u PEC. Surprisingly, the PEC of the

23Πu needed much less adjustment, although significant number of the observed

levels contains admixture of this state.

At the final stages of the analysis, a specific feature of the problem was that
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most of the experimental data could be reasonably reproduced by a four chan-

nels model and only levels in close vicinity of the avoided crossings between the

rovibrational ladders of the interacting states showed significant disagreement.

While the residuals for the e symmetry levels were distributed convincingly

around zero within the experimental uncertainty, some of the f symmetry levels

deviated from the predictions of the model around culminations of the C(2)1Πu

∼33Σ+
u perturbation. Therefore the Ω = 0± components of the 23Πu were sub-

sequently added to the model. The 23Π0− and 23Π0+ components have the same

PECs as the 23Π1 one but they differ by the diagonal spin-orbit matrix element

A3Π3Π(R) (see eq. 1), which was adjusted to achieve the desired agreement in

the f symmetry manifold. However, the corresponding new channel (23Π0+)

in the e manifold led to slight degradation of the fit quality in the region of

strong C(2)1Πu ∼ 33Σ+
u mixing for v′ = 4 − 6. The model for the e and the f

symmetry levels looks very similar except for the 21Σ+
u state, present only in

the Hamiltonian matrix for e parity levels and for the 33Σ+
0−

state, present only

in the matrix for f levels. Therefore it was suspected that interaction between

the 23Π0+ and 21Σ+
0 states caused the problems. Indeed, a slight adjustment

of the ξ1Σ3Π(R) functions restored the fit quality. The finally fitted coupling

functions are shown in Figure 4 and the rest of them are taken without changes

from Ref. [30]. All radial functions and PECs of the model are listed in the

Supplementary materials [34].

The model reproduces positions of 2577 energy levels (2035 from the PLS

experiment and 542 from Refs. [16, 17]) with a root-mean-square (rms) devi-

ation of 0.069 cm−1 and a dimensionless standard deviation of 0.77. When

applied to the 2950 PLS experimental frequencies, the rms deviation amounts

to 0.075 cm−1. To assess the quality of the fit we provide a plot of the residuals

(Fig. 5b). The red horizontal dashed lines indicate the experimental uncer-

tainty. For comparison we performed also a single channel fit of all data from

the present experiment (i.e. excluding data on the 23Πu and 33Σ+
u states taken

from Refs. [16] and [17]) with a single model function, namely the PEC of the

21Πu state. The residuals of this fit are shown in Fig. 5a (part of them can be
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Figure 4: Radial functions of selected matrix elements, adjusted in the fit, compared with the

theoretical values [30]. The other radial functions (see eq. 1 and 2) are the same as presented

in Ref. [30].
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Figure 5: Distribution of the residuals in line positions of the C(2)1Πu ← X1Σ
+
g system

in Rb2 before (a) and after (b) the coupled-channels fit. The horizontal lines (red online)

mark borders of the uncertainty band corresponding to the experimental uncertainty, i.e. to

±0.1 cm−1. Note a difference in the vertical axis scale of both panels.

seen also in Fig. 3a). As expected, a significant number of levels is well outside

the experimental uncertainty in this simplified model.

In Ref. [16] (Table IV) the authors list the spin-orbit constant Av which de-

termines the shift of the 23Π0 levels with respect to those of the 23Π1 state. It is

interesting to compare these values with matrix elements 〈3Π, v′|A3Π3Π(R)|3Π, v′〉
calculated using the radial function from the present study (see Table 1). The

agreement is better for higher vibrational levels, while for lower ones the devia-

tions become larger and reach 0.17 cm−1. Around the potential minimum, the

present A3Π3Π(R) function is determined mainly by the same data as in Ref. [16],

so one would expect better agreement. However, in Ref. [16] the whole shift was

attributed to the diagonal spin-orbit interaction whereas in the present study

the 23Πu state levels are shifted also by other interactions (see eqs. (1) and (2)).

Table 1 shows that the diagonal spin-orbit contribution is indeed dominant, but
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Table 1: Comparison between the spin-orbit constant Av (in cm−1) which determines shift

of the 23Π0 state levels with respect to those of the 23Π1 state, as found in Ref. [16] and

determined in this study.

v 0 1 2 3 4 5 6 7 8 9 10

Ref. [16] 1.54 1.61 1.71 1.82 1.94 2.03 2.14 2.27 2.37 2.52 2.66

This study 1.37 1.51 1.64 1.77 1.88 2.00 2.13 2.26 2.40 2.54 2.69

for v′ = 0− 5 about 10% of the shift has probably a different origin.

6. Conclusions

In this paper we presented an example of deperturbation, where most part of

the experimental data belongs predominantly to one of the interacting electronic

states (C(2)1Πu) and the other states are visible mainly through the interactions

with this ‘bright’ state. This happens because the off-diagonal matrix elements

of the molecular Hamiltonian are relatively small and significant mixing ap-

pears only in case of small separation between levels. The perturbations could

be classified as local, but in fact they are so numerous that regular perturbation

patterns like displayed in Figure 3a are rather rare. The problem seems under-

determined since finally to model the experimental observations four potential

curves and seven radial functions of the perturbing operators had to be deduced.

It was not straightforward to build the final model and to fit the experimental

data with physically sensible functions, but this goal has been achieved. Apart

from our data we used for this purpose the existing experimental data on the

23Πu and 33Σ+
u states as well as the high quality theoretical predictions [19, 30].

Although the residuals of the fit look convincing, we should note that there

are still few dozens of lines, frequencies of which deviate from the model pre-

dictions by more than 3 standard deviations (> 0.3 cm−1, see Fig. 5b). We

could not incorporate them into the list of ‘good’ lines and so the question

whether their assignment is wrong or the model needs refinement is left open.

Nevertheless, it should be stressed that the presented model allowed to repro-
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duce successfully positions of nearly three thousands lines in the very complex

spectrum.
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